

There are three kinds of lies:
lies, damned lies and statistics.
Attributed byMark Twain
to Berijamin Disraeli

Research Methods and Data Analysis exercise

Compiled by
Mart Murdvee
© Mart Murdvee $\mathrm{DDO}-2 \mathrm{zk}$

Levels of phenomenon investigation and use of results

1. Description: definitions, facts, measures, structures, conditions, etc.
2. Explaining:
regularities, relations, causality, etc.
3. Prediction:
using the knowledge about of the regularities predict future changes
4. Using (manipulation):
using the knowledge about of the regularities induce desired changes

- Statistics (as scientific discipline) is the study of the collection, organization, analysis, interpretation, presentation of data and making decisions based on data.
- Statistics (as practice) is a set of the methods, procedures, rules and customs for collection, organization, analysis, interpretation, presentation of data and making decisions based on data.

Operationalization

is the process of defining a fuzzy concept so as to make the concept clearly distinguishable or measurable and to understand it in terms of empirical observations.

- First step: defining of the concept
- Operationalization specifies methods for measuring

What means "spherical"? How to measure sphere?

Descriptive and inferential statistics

Descriptive statistics (kirieldav statistika)-describing data in a generalized / simplified, manageable and understandable format:

- resumptive statistics (central tendency, variation, distribution, ...);
- presentation of data - graphs, charts, drawings, tables ... Inferential statistics (järelduslik statistika) - the probability calculations to draw conclusions about the population, to determine the accuracy and reliability of the findings and hypotheses tested:
- reliability of statistics (confidence interval...);
- probability / error of differences or correlations (statistical significance, p-value).

Some useful Windows shortcuts	
Press this key To do this Ctrl+C (or Ctrl+Insert) Copy the selected item Ctrl+V (or Shift+Insert) Paste the selected item Ctrl+Z Undo an action!!! Ctrl+Y Redo an action Ctrl+A Select all items (in a document) Esc Cancel the current task Left Alt+Shift Switch the input language when multiple input languages are enabled	

Excel 2010 screen parts

Excel: Managing screen and data

Widening a column
Place your cursor over the column headings ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ etc.) You can drag the edges of the column heading
(when the cursor becomes $<\mathrm{H} \rightarrow$) (when the cursor becomes < $\langle\gg$) to widen the column. If you double-click the edge of the column heading
Inserting a row or column
Select row or column. Right-clic and add. Rows are insetted above your cursor. Columns are inseted to the
Select row of colum
left of your cursor.
Copying and moving data
Select the cells containing the data with the mouse. Right-lic and Copy (Ctr-C) to copy the data. Move your
cursor to where you want the data to start. Paste (Ctr-V) or select paste mode. Going to another location
and pressing Ctr-V will copy the data there as well.
Clearing the data from a row or column
Select the row(s) or column(s) by clicking
Select ne row(s)
the Delete key.
Deleting a row or column
Select the row(s) or column(s). Right-click and select Delete.
Keeping columns and rows visible as you scroll
visible as you scroll around the data
To "freeze" the top row(s) and leftrow(s), select the cell where the scrolling starts. Go to View \| Freeze Panes.

OMar Mravee DDCDD 17

Excel: cell address, or "cell reference"

Excel: Simple calculations

- Cells containing numbers for calculations should not contain anything else!
- Click in the cell where you want the answer to appear
- Insert an = and then enter numbers or click cells and insert operands:

+ for addition [=2+3]
 - for subtraction [=2-1]

* for multiplication $[=4 * 5$ equations with cell referenc / for division [=4/2] \rightarrow
- There is a quick way to add - highlight the data to be added up and click the AutoSum icon (Σ) and select cell range.

Series

	A	B	c	Excel is good at expanding series automatically. Apart from simple numerical series (e.g. 1, 2, $3 \ldots$...), Excel knows the days of the week etc. - Type the first two members of the series in a column or row, select the cells and drag the small black square at the bottom left corner of the selection to the right or down respectively.			
1	1	Q1	esmaspäev				
2	2	Q2	teisipäev kolmapäev				
4	4	Q4	neljapàev				
5	5	Q5	reede				
6 7	6	Q6 ${ }_{\text {Q }}$	laupäev				
8	8	Q8	esmaspäev				
9	9	Q9	teisipäev				
10	10	Q10	kolmapàv				
11	11	Q11	neljapàev				
13	13	Q13	laupäev				
14	14	Q14	pühapăev				
15	15	Q15	esmaspäev				
16	16	Q16	teisipäev				
17	17	Q17	kolmapảev neljapäev				
19	19	Q19	reede				
20	19	Q20	laupäev				
	20	Q21	pühapäev				

Keep Your research (literature, data, analysis) in order and meaningful!

- Folder system and folder names
- File names
- Sheet names
- Parameter / variable names
- Apply a system in names

Record important manipulations and changes!

OMar Mrdvee $x \omega 0.2 x$ 23

Series

4	A	B	C	If You does not like series:
1		Q1	esmaspāev	
2		Q1	esmaspäev esmaspäev	- Copy the cell(s) (CTR+C)
		Q1	esmaspäev	
5		Q1	esmaspäev esmaspåev	- Select range
7		Q1	esmaspäev	
8		Q1	esmaspāev esmaspāev	- Paste cells (CTR+V)
10		Q1	esmaspāev	
11		Q1	esmaspảev	
12		Q1	esmaspäev	
14		Q1	esmaspaev	
15		Q1	esmaspảev	
16		Q1	esmaspäev	
17		Q1	esmaspäev	
181	1	Q1	esmaspảev	
19	1	Q1	esmaspäev	
201	1	Q1	esmaspä̀v	
- Mart Mravee $\mathrm{DC-D6}$				

Relative and absolute references

- References to cells in Excel are by default "relative references". This means if you copy the cells somewhere else, any formulae in them will still work, but references are relative

- Using \$ sign, the references can be "freezed"
- \$ before column letter „freezes" column
- \$ before row number „freezes" row

Excel：Elements of formulas

＝FUNCTION＿NAME（cell；range；number；＂text＂；function）
－formula begins with equal sign $=$
－followed by FUNCTION＿NAME
－formula operators are in brackets
－formula operators are separated by semicolon sign ．
－formula operators：
－cell naddress＂
－range of cells（cell：cell）
－number
－„text＂（between quotation marks）
－function operators
－nesting functions

When things go wrong：

Data input

 \square 35．Kuidas käitute Teie，kui eakas kätub provotseerivalt？

二二⿰亻⿱丶⿻工二十⿴⿱冂一⿰丨丨丁心．

Remember：

ONE CELL－ ONE NUMBER

Arithmetic operators

To perform basic mathematical operations such as addition，subtraction，or multiplication；combine numbers；and produce numeric results，use the following arithmetic operators．

Comparison operators	
You can compare two values with the following operators．When two values are compared by using these operators，the result is a logical value either TRUE or FALSE．	
Comparison operator	Meaning（Example）
$=$（equal sign）	Equal to（A1＝B1）
$>$（greater than sign）	Greater than（A1＞B1）
$<$（less than sign）	Less than（A1＜B1）
$>=$（greater than or equal to sign）	Greater than or equal to（A1＞＝B1）
$<=$（less than or equal to sign）	Less than or equal to（A1＜＝B1）
$<>$（not equal to sign）	Not equal to（A1＜＞B1）

Text concatenation operator

Use the ampersand（\＆）to join，or concatenate，one or more text strings to produce a single piece of text．

| Text operator | Meaning（Example） |
| :--- | :--- | :--- |
| \＆（ampersand） | Connects or concatenates two values to produce one
 continuous text value（＝＂North＂\＆＂wind＂） |
| Reference Operators | |
| Combine ranges of cells for calculations with the following operators． | |

Coding missing data

Text compilation

Operator \&
or
Function
=CONCATENATE(cell;"text"; ...)

Common sources of error in databases are:

- missing data coded as "999"
- 'not applicable' or 'blank' coded as "0"
- typing errors on data entry (use Data Validation)
- column shift - data for one variable column was entered under the adjacent column
- fabricated data - 'made up' or contrived
- coding errors
- measurement and interview errors'

Most errors will be detected using three procedures

- descriptive statistics (MIN; MAX)
- scatterplots
- histograms
onart Murdvee $D \omega$ - 8 6

Problem: missing data

- Missing data can be meaningful, while it contains information about:
- questionnaire quality (eg poorly worded question).
- respondents - some questions can be unpleasant, too sensitive, and therefore, less answered.
- The person's data set can be considered usable, when more than 80% of the questions are answered.
- Missing data (in order to obtain a sufficiently large sample for analysis) may be replaced with the parameter average, median, mode, or the parameter value can be derived from other parameters by using regression equation.

How many?

Function	Does
=COUNT(range)	Counts the number of cells containing numbers in a range
=COUNTA(range)	Counts the number of non- blank cells within a range
=COUNTBLANK(range)	Counts the number of blank cells within a range
$=$ COUNTIF(range;value)	Counts the number of cells in range that are the same as value / criteria.
$=$ COUNTIFS(criteria_range1; criteria1;[criteria_range2, criteria2];...)	Counts the number of times all criteria are met.

Scale	
	a gradation pattern of measurement (rule), which determines the numeric value of the result of measurement.
	Recommendation: Use standard and controlled scales!
	39

```
Logical operation IF
Function:
=IF(logical_test;value_if_true;value_if_false)
Counting empty cells:
Function:
=COUNTBLANK(range)
Replace empty cells with mode of a range and let full cells with initial value: =IF (COUNTBLANK(reference cell)=1;MODE(range); reference cell)
```


Counting_.:"-marked cells.

```
Function:
=COUNTIF (range;".".
Replace ,:":-marked cells with mean of a range and let not-,:"-marked cells with initial value:
\(=\mathrm{IF}(\) COUNTIF(referenœ cell;"".")=1;AVERAGE(range),reference cell)
```

\qquad38

Direction of scale

Confusing Scale

colutry	brazdon ontuit Net status	
Estonia	Free	10
usa	Free	13
Germany	Free	16
Australia	Free	18
uк	Free	25
Italy	Free	26
South	Free	${ }^{26}$

It is desirable that the numerical values of the scale corresponds to the concept whitch is studied. A higher rate or more of something should correspond to the bigger numbers. Otherwise, the results are difficult to comprehend.

- For example, the concept of measuring the "exhaustion rate" with question, "I feel used up at the end of the workday," should have numeric scale direction:

1 - never, 2 - sometimes, 3 - always NOT: 3 - never, 2 - sometimes, 1 - always

FreedomHouse
FREFDOM ON THENET 2011
AGlobal Assessmentofinternet
and Digital Media
onart Mrrivee $\mathrm{mon}-\mathrm{x}$ w

Inversion of the scale values:

$X_{\text {inverted }}=\left(\right.$ Min $_{\text {scale }}+$ Max $\left._{\text {scale }}\right)-X$
© Mar Mrdvee $x \infty-x h$
when the numeric value of scale does not meet the direction of the concept meaning, or

- the value of the parameter must be included in to the factor with inverted value

Distribution of values Histogram

Interval widths (bin widths), some "rules of thumb,,

- Sturgis's rule: the number of intervals is close as possible to $1+\log _{2}(\mathrm{~N})$, where $\log _{2}(\mathrm{~N})$ is the base 2 logarithm of the number of observations. The formula can also be written as $1+3.3 \log _{10}(\mathrm{~N})$ where $\log _{10}(\mathrm{~N})$ is the logarithm base 10 of the number of observations
$=1+\mathrm{LOG}(\mathrm{N} ; 2)$ or $=1+3,3^{*} \mathrm{LOG}(\mathrm{N} ; 10)$
- Rice rule, which is to set the number of intervals to twice the cube root of the number of observations.
$=2^{*} \operatorname{POWER}(\mathrm{~N} ; 1 / 3)$
Basic rule:
Experiment with different choices of width, and to choose a histogram according to how well it communicates the shape of the distribution.

Histogram

Histogram

Function:
=FREQUENCY(data_array;bins _array)

- Calculates how often values occur within a range of values, and then returns a vertical array of numbers
- FREQUENCY is entered as an array formula
(Shift+CTR+Enter) after you select a range of adjacent cells into which you want the returned distribution to appear.

Designing Chart Elements

1. Select chart element
2. RightClick \rightarrow Format
3. Use menu

Histogram

Function:
=COUNTIF(range;criteria)
Counts the number of cells in range that are the same as value.

Interpreting histogram

istribution of parameter
refers to the number of distinct
peaks, or areas of cluster, that
appear within a distribution, with
each such peak being spoken of
as a mode.

Interpreting histogram

Distribution of parameter

Skewness

Asümeetriakordaja

Pearson's 1. skewness coeficent:

$$
S K=\frac{\bar{x}-M_{o}}{S D} \quad M_{o}-\text { mode }
$$

Pearson's 2. skewness œeficent: $S K=\frac{3\left(\bar{x}-M_{d}\right)}{S D} \mathrm{Md}_{\mathrm{d}}$ median
a measure of symmetry, or more precisely, the lack of symmetry of distribution:

- SK>0-data that are skewed left, more smaller values;
- SK=0 - symmetrical;
- SK<0-data that are skewed right, more greater values.
- =SKEW (range)

Distribution of parameter Kurtosis järskuskordaja, ekstsess	
	the peakedness of a graph of the distribution compared to normal distribution: $-\frac{k>0}{\text { "long tails" }}$ extreme values, - $\mathbf{k}=\mathbf{0}$ - normal distribution; $-\underline{k}<\mathbf{0}-$ few extreme values, „short tails" - =KURT(range)
$k=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{4}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}-3$	${ }^{61}$

Rule of thumb about normality of variable

PROBLEM! Many of the statistical methods (Z test, t test, ANOVA, regression, covariance, correlation, chisquare test, F test) require the assumption that a variable or variables are normally distributed. Otherwise the statistical methods will produce totally invalid results. (QUESTIONABLE!)
A variable is reasonably close to normal if its skewness and kurtosis have values between $-1,0$ and $+1,0$.

When a variable is not normally distributed, we can create a transfomed variable and test it for normality. If the transformed variable is
normally distributed, we can substitute it in our analysis.
ransformations are: the logarithmic transformation, the square root transformation, and the inversetransformation
OR: use non-parametric tests

Chi-squared (χ^{2}) test

Hii-ruut test

Function:
=CHITEST (observed_range;expected_range) returns the p-value from the chi-squared (χ^{2}) distribution for the statistic and the appropriate degrees of freedom.

